90 research outputs found

    An Improved Data Augmentation Scheme for Model Predictive Control Policy Approximation

    Full text link
    This paper considers the problem of data generation for MPC policy approximation. Learning an approximate MPC policy from expert demonstrations requires a large data set consisting of optimal state-action pairs, sampled across the feasible state space. Yet, the key challenge of efficiently generating the training samples has not been studied widely. Recently, a sensitivity-based data augmentation framework for MPC policy approximation was proposed, where the parametric sensitivities are exploited to cheaply generate several additional samples from a single offline MPC computation. The error due to augmenting the training data set with inexact samples was shown to increase with the size of the neighborhood around each sample used for data augmentation. Building upon this work, this letter paper presents an improved data augmentation scheme based on predictor-corrector steps that enforces a user-defined level of accuracy, and shows that the error bound of the augmented samples are independent of the size of the neighborhood used for data augmentation

    Characterization and Lower Bounds for Branching Program Size using Projective Dimension

    Get PDF
    We study projective dimension, a graph parameter (denoted by pd(G)(G) for a graph GG), introduced by (Pudl\'ak, R\"odl 1992), who showed that proving lower bounds for pd(Gf)(G_f) for bipartite graphs GfG_f associated with a Boolean function ff imply size lower bounds for branching programs computing ff. Despite several attempts (Pudl\'ak, R\"odl 1992 ; Babai, R\'{o}nyai, Ganapathy 2000), proving super-linear lower bounds for projective dimension of explicit families of graphs has remained elusive. We show that there exist a Boolean function ff (on nn bits) for which the gap between the projective dimension and size of the optimal branching program computing ff (denoted by bpsize(f)(f)), is 2Ω(n)2^{\Omega(n)}. Motivated by the argument in (Pudl\'ak, R\"odl 1992), we define two variants of projective dimension - projective dimension with intersection dimension 1 (denoted by upd(G)(G)) and bitwise decomposable projective dimension (denoted by bitpdim(G)(G)). As our main result, we show that there is an explicit family of graphs on N=2nN = 2^n vertices such that the projective dimension is O(n)O(\sqrt{n}), the projective dimension with intersection dimension 11 is Ω(n)\Omega(n) and the bitwise decomposable projective dimension is Ω(n1.5logn)\Omega(\frac{n^{1.5}}{\log n}). We also show that there exist a Boolean function ff (on nn bits) for which the gap between upd(Gf)(G_f) and bpsize(f)(f) is 2Ω(n)2^{\Omega(n)}. In contrast, we also show that the bitwise decomposable projective dimension characterizes size of the branching program up to a polynomial factor. That is, there exists a constant c>0c>0 and for any function ff, bitpdim(Gf)/6bpsize(f)(bitpdim(Gf))c\textrm{bitpdim}(G_f)/6 \le \textrm{bpsize}(f) \le (\textrm{bitpdim}(G_f))^c. We also study two other variants of projective dimension and show that they are exactly equal to well-studied graph parameters - bipartite clique cover number and bipartite partition number respectively.Comment: 24 pages, 3 figure

    Stability Properties of the Adaptive Horizon Multi-Stage MPC

    Full text link
    This paper presents an adaptive horizon multi-stage model-predictive control (MPC) algorithm. It establishes appropriate criteria for recursive feasibility and robust stability using the theory of input-to-state practical stability (ISpS). The proposed algorithm employs parametric nonlinear programming (NLP) sensitivity and terminal ingredients to determine the minimum stabilizing prediction horizon for all the scenarios considered in the subsequent iterations of the multi-stage MPC. This technique notably decreases the computational cost in nonlinear model-predictive control systems with uncertainty, as they involve solving large and complex optimization problems. The efficacy of the controller is illustrated using three numerical examples that illustrate a reduction in computational delay in multi-stage MPC.Comment: Accepted for publication in Elsevier's Journal of Process Contro

    Classical Simulation of One-Query Quantum Distinguishers

    Get PDF

    Bounded Indistinguishability for Simple Sources

    Get PDF

    Mixed-Integer MPC Strategies for Fueling and Density Control in Fusion Tokamaks

    Full text link
    Model predictive control (MPC) is promising for fueling and core density feedback control in nuclear fusion tokamaks, where the primary actuators, frozen hydrogen fuel pellets fired into the plasma, are discrete. Previous density feedback control approaches have only approximated pellet injection as a continuous input due to the complexity that it introduces. In this letter, we model plasma density and pellet injection as a hybrid system and propose two MPC strategies for density control: mixed-integer (MI) MPC using a conventional mixed-integer programming (MIP) solver and MPC utilizing our novel modification of the penalty term homotopy (PTH) algorithm. By relaxing the integer requirements, the PTH algorithm transforms the MIP problem into a series of continuous optimization problems, reducing computational complexity. Our novel modification to the PTH algorithm ensures that it can handle path constraints, making it viable for constrained hybrid MPC in general. Both strategies perform well with regards to reference tracking without violating path constraints and satisfy the computation time limit for real-time control of the pellet injection system. However, the computation time of the PTH-based MPC strategy consistently outpaces the conventional MI-MPC strategy
    corecore